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ABSTRACT

The common way to study microtubule dynamics in mi-
croscopy image sequences is to track the growing ends of
microtubules. However, this strategy may fail for dense
microtubules due to numerous ambiguities in point associ-
ation. We suggest that detecting and tracking full length
microtules, instead of tracking their extremities only, would
provide substantial information to resolve these ambiguities.
In this paper, we propose a first part toward that end by in-
troducting a fully automated detection method of full length
microtubules, with a statistical control of false detections. It
is based on the Feature-adapted Beamlet transform which has
been successfully used for filament detection [1]. We provide
three improvements to our previous work: i) a normalization
of beamlet coefficients, ii) a scale-dependent thresholding
of beamlets and iii) a novel beamlet chaining algorithm,
adapted to microtubules images.

Index Terms— Beamlet transform, Radon transform,
steerable filters, feature, microtubule dynamics analysis

1. INTRODUCTION

Microtubules are important components of the cytoskele-
ton involved in many important cellular functions such as
organelles transport, positioning and mitosis [2]. During mi-
tosis, the long and stable network of interphasic microtubules
is dramatically remodeled into shorter and more unstable
microtubules to build up the mitotic spindle, the structure
required for chromosomes segregation. This microtubule
reorganisation is due to changes in microtubule properties.
Microtubules are hollow polymers of subunits of alpha-

beta tubulin dimers. These thin filaments (∼ 2.5 nm) have
the property to grow by addition of subunits at their fastest
growing end (the plus end) and shrink by losing tubulin sub-
units from this end. Although some of the main regulators
of microtubule dynamics have been identified and character-
ized, a detailed view of how microtubule stability is regulated
throughout the cell cycle is still lacking.
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The common way to study microtubule dynamics in mi-
croscopy image sequence is to track the growing ends of mi-
crotubules thanks to a multiple particle tracking algorithm
such as presented in [3]. However, this strategy may fail
in presence of strong density microtubules due to high level
of ambiguities in point association. We suggest that detect-
ing and tracking full length microtules, instead of tracking
their extremities only, would provide substantial information
to resolve these ambiguities while leading to more precise
measurements on microtubule’s length, displacement, grow-
ing and shrinking rates. Figure 1 shows an example of micro-
tubule growth during interphase.

Fig. 1. Full-labeled microtubule growth during interphase.

In this paper, we present the first part of an ongoing
project on microtubule dynamics analysis and focus on the
detection part. We propose a fully automated detection me-
thod of full length microtubules, with a statistical control of
false detections. It is based on the Feature-adapted Beamlet
transform which has been successfully used in filament de-
tection algorithms [1]. A typical detection process based on
such a transform can be described as follows: a) compute
the Feature-adapted Beamlet transform of the image, b) nor-
malize beamlet coefficients, c) threshold coefficients, d) put
beamlets together (chaining) in order to get a list of detected
filaments. These steps are depicted in figure 2. Despite its
robustness, that methodology does not provide real statisti-
cal control on the detections. To achieve that requirement,
we provide three improvements to our previous work: i) a
normalization of beamlet coefficients, ii) a scale-dependent
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thresholding of beamlets and iii) a novel beamlet chain-
ing algorithm, adapted to microtubules images. In section
2, we recall some key elements of our previous work on
Feature-adapted Beamlet transform. Section 3 presents our
contributions while section 4 presents some experiments on
real data. Finally, section 5 concludes this paper.
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Fig. 2. Workflow of a filament detection process using Feature-adapted
Beamlet transform.

2. PREVIOUS WORK

2.1. Beamlet transform

The Beamlet transform introduced in [4] defines a set of dyad-
ically organized line segments (beamlets) occupying a range
of dyadic locations and scales, and spanning a full range of
orientations. The underlying idea of the Beamlet transform is
to compute line integrals only on the set of beamlets, which
is an efficient substitute of the entire set of segments for it
can approximate any segment and curve by a finite chain of
beamlets. The beamlet transform can be computed as follows:
1) define the set of all dyadic squares obtained by recursive
partitionning of the image domain and 2) on each square S,
compute the classical Radon tranform on the portion of the
image induced by S.

2.2. Feature-adapted Radon transform

Recently, a novel Fourier-based approach has been proposed
in order to compute the discrete Radon tranform [5]. The
method relies on a discrete Fourier slice theorem, which as-
sociates the discrete Radon transform with the pseudo-polar
Fourier transform. The algorithm is fast since it computes the
2D discrete Radon transform using O(N log N) operations,
whereN = n2 is the number of pixels in the image. For a ba-
sically horizontal line of the form y = tan(θ)x+ t, where the
slope | tan(θ)| ≤ 1, the discrete Radon transform associated
with such line set is defined as

R[I](t, θ) =
∑

u

Ĩ(u, tan(θ)u + t), (1)

where Ĩ(u, y) is an interpolant that takes discrete values in
the first argument and continuous values in the second argu-

ment. The 1-dimensional interpolation is calculated thanks to
a Dirichlet kernel (see [5] for complete details). While this
technique provides a quite efficient way to compute discrete
Radon transform, it does not take into account any line-profile
such as edge or ridge-like profile for the case of filamentary
structures. It implies that the Radon and Beamlet transforms
are not well-adapted to represent curvilinear objects carrying
a specific line-profile. To overcome this limitation, it has been
proposed in [6] the Feature-adapted Radon transform. Con-
sider a filter h representing a 2-dimensional line-profile. Let
hθ be a rotated version of h in the direction θ. In a first step,
we filter the image I with hθ before computing equation (1).
For a fixed θ, we have

R[I ∗ hθ](t, θ) =
∑

u

˜I ∗ hθ(u, tan(θ)u + t). (2)

A high coefficient means that the local feature runs signifi-
cantly along the line y = tan(θ)x+ t. In general, the compu-
tation of all these coefficients is not achievable, since it re-
quires to convolve the image and to perform Pseudo-Polar
Fourier transform as many times as the number of θ’s, i.e.
2n times. For the special case where h belongs to the class
of steerable filters [7], we can write hθ as a linear combina-
tion of basis filters hθ(x, y) =

∑M
j=1 kj(θ)h

θj (x, y), where
kj are interpolation functions that only depend on θ and the
basis filters hθj are independent of θ. A convolution of an im-
age with a steerable filter of arbitrary orientation is then equal
to a finite weighted sum of convolutions of the image with
each basis filter. It follows that

R[I ∗ hθ](t, θ) =

M∑
j=1

kj(θ)R[I ∗ hθj ](t, θ). (3)

Equation (3) can be evaluated for all parameters (t, θ) in
O(N log N) operations (see [6] for complete details). The ex-
tension to the Feature-adapted Beamlet transform is straight-
forward: instead of using classical Radon transform in the
Beamlet transform, the Feature-adapted Radon transform
can be applied on all dyadic squares that partition the image
domain yielding the Feature-adapted Beamlet transform.

3. STATISTICALLY-CONTROLLED DETECTION OF
FILAMENTS

In this section, we propose several improvements to provide a
real statistical control regarding the number of false detec-
tions. Starting from a simple assumption on image statis-
tics, we first derive the distribution of Feature-adapted Radon
coefficients. Then, we propose a novel algorithm that opti-
mizes a cost function in order to select a list of significant
segments over the whole set of beamlets. This selection in-
volves a thresholding step that depends on the scale of co-
efficients. A family of scale-dependent threshold is derived
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which garanties a statistical control on the number of false
detections. Finally, we propose an adapted beamlet chaining
algorithm in order to put beamlets together and provide a list
of detected microtubules.

3.1. Normalization of coefficients

Under the assumption that images are corrupted by an addi-
tive Gaussian white noise, we derive the following result on
the distribution of Feature-adapted Radon coefficients:

Proposition 1. if I = (Ii)i∈�2
are i.i.d. normal variables

where Ii ∼ N (μ, σ2), then we have R[I ∗ hθ](t, θ) ∼
N (μR, σ2

R) where

μR = μ‖h‖1R[�](t, θ),

σ2
R = σ2‖h‖2

2

n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

Dm(tan(θ)u + t − v)2,

where �(u, v) = 1 for all (u, v) andDm is a Dirichlet kernel
defined asDm(t) = sin(πt)

m sin(πt/m) withm = 2n + 1. It follows
that

R̃[I ∗ hθ](t, θ) =
R[I ∗ hθ](t, θ) − μR

σR
∼ N (0, 1).

The proof is given in [8]. In order to normalize Feature-
adapted beamlet coefficients, we proceed as follows: 1) we
automatically estimate μ̂ from the median of I and σ̂ from
the median absolute deviation estimation of the Daubechies
D8 wavelet coefficients at the 1st scale, 2) for each scale j,
0 ≤ j ≤ J , we compute the maps μR and σR for every
Radon coefficients (t, θ) thanks to proposition 1 and finally,
3) we normalize each coefficient by its associated μR and σR.
Note that if μ and σ are discarded from μR and σR, these
quantities only depend on the filter h and image size and thus,
can be precomputed for all scales.

3.2. Selection of beamlets

In this section, we propose a new cost function optimization
which selects a list of significant beamlets. A recursive dyadic
partitionP of the image domain is any partition, starting from
the whole image domain, obtained by recursively choosing
between replacing any square of the partition by its decom-
position into four dyadic squares or leaving it unsplit. This
concept is very similar to the quadtree decomposition tech-
nique. A beamlet-decorated partition is a partition in which
each square is associated with at most one beamlet. We note
Pj the subset of P of all dyadic squares at scale j. We max-
imize over all recursive dyadic partition the following cost
function:

E(P) =

J∑
j=0

∑
S∈Pj

(
max

t,θ

{
R̃[IS ∗ hθ](t, θ)

}
− λj

)+

, (4)

where IS is the portion of the image defined by square S and
(λj)0≤j≤J is a family of scale-dependent thresholds. The no-
tation (x)+ stands for x if x > 0, 0 otherwise. Note that equa-
tion (4) can be solve efficiently by a recursive tree-pruning
algorithm due to additivity of the cost function. See [4] for
complete details.

3.3. Choice of scale-dependent thresholds

Here we derive the λj terms such that they statistically control
the number of false detections. We define a simple binary
hypothesis test:
{

H0: square S is decorated by argmax
t,θ

{
R̃[IS ∗ hθ](t, θ)

}
H1: square S is left undecorated.

For a fixed percentage α of false detection, choosing the null
hypothesis while H1 is true corresponds to

P
[
max
t,θ

{
R̃[IS ∗ hθ](t, θ)

}
≥ λj

]
= α (5)

⇐⇒
[ λj∫
−∞

1√
2π

exp−
1

2
x2

dx
]Nj

= 1 − α (6)

⇐⇒ 1

2Nj

(
1 + erf(

√
2

2
λj)

)Nj

= 1 − α (7)

where Nj = 4n2 is the number of Radon coefficients for
a dyadic square of size n = 2j . We solve this equation
for typical quantiles α = 1%, 5%, 10% in order to exhibit
λj values for each scale 0 ≤ j ≤ J . Maxima software
(http://maxima.sourceforge.net/) has been used to perform
these computations.

3.4. Beamlet chaining

We now describe a beamlet chaining algorithm adapted for
microtubules images. The objective is to create a list of fila-
ments from a list of beamlets. As shown in figure 1, centro-
some, from which microtubules grow and shrink, is located
in the center of the image. Then we propose a greedy al-
gorithm that chains one beamlet at once, starting from the
centrosome’s estimated location to the image boundaries. We
convert beamlet coordinates into polar coordinate system and
sort themwith respect to their radial coordinate in order to tra-
verse the list only once. This algorithm requires O(N log N)
operations to create a list of filaments, whereN stands for the
number of detected beamlets.

4. EXPERIMENTS

In this section, we experiment our detection method on an im-
age sequence of growing microtubules during interphase. In
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order to monitor full length microtubules in live microscopy
images, tubulin has been rhodamine-labeled and acquired
thanks to an epifluorescence microscope over several time
frames.

Fig. 3. Detection of full-length microtubules during interphase at t = 24s,
32s, 48s and 76s. Right column shows the detection after chaining step. Each
filament is labeled by a single color.

Since microtubules width cannot be resolved by standard mi-
croscope, it is acceptable to consider the transverse dimen-
sion of such filaments to be small relative to the point spread
function width of the microscope. We use a gaussian approx-
imation of the PSF [9] with σPSF = 0.61 × λem/N.A. 

0.21μm. For the filter h, we choose a 2nd order filter detector
defined in [10] with σh = σPSF /

√
2 
 0.14μm. Figure 3

shows the results of detection at different time frames of the
sequence. In the second column, each filament is labeled by
a single colour. It can be appreciated that microtubules are

detected with good accuracy. However, we can notice some
errors in the chaining step due to the fact that the assumption
that all filaments are growing from the center may not be true.
This can be the case when microtubules coming from another
centrosome enter into the field.

5. CONCLUSION

In this paper, we have proposed a first part toward quan-
tification of full-length microtubule dynamics in live mi-
croscopy images. We have introduced a fully automated
detection method of full length microtubules, based on the
Feature-adapted Beamlet transform technique, with a statis-
tical control of false detections. To achieve this statistical
requirement, we have proposed three improvements to our
previous work: i) a normalization of beamlet coefficients, ii)
a scale-dependent thresholding of beamlets and iii) a novel
beamlet chaining algorithm, adapted to microtubules images.
Preliminary results given here are encouraging. The next step
now is to embed these detections into a tracking system in
order to fully quantify microtubules dynamics.
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